Maps from the Minimal Grope to an Arbitrary Grope
نویسندگان
چکیده
We give a systematic definition of the fundamental groups of gropes, which we call grope groups. We show that there exists a nontrivial homomorphism from the minimal grope group M to another grope group G only if G is the free product of M with another grope group.
منابع مشابه
A ug 2 00 6 RIGIDITY OF THE MINIMAL GROPE GROUP
We give a systematic definition of the fundamental groups of gropes, which we call grope groups. We show that there exists a nontrivial homomorphism from the minimal grope group M to another grope group G only if G is the free product of M with another grope group.
متن کاملGrope Cobordism of Classical Knots
Motivated by the lower central series of a group, we define the notion of a grope cobordism between two knots in a 3-manifold. Just like an iterated group commutator, each grope cobordism has a type that can be described by a rooted unitrivalent tree. By filtering these trees in different ways, we show how the Goussarov-Habiro approach to finite type invariants of knots is closely related to ou...
متن کاملGrope Cobordism and Feynman Diagrams
We explain how the usual algebras of Feynman diagrams behave under the grope degree introduced in [CT]. We show that the Kontsevich integral rationally classifies grope cobordisms of knots in 3-space when the “class” is used to organize gropes. This implies that the grope cobordism equivalence relations are highly nontrivial in dimension 3. We also show that the class is not a useful organizing...
متن کامل3 0 Ju l 1 99 9 A knot bounding a grope of class n is ⌈ n 2 ⌉ - trivial ∗
In this article it is proven that if a knot, K, bounds an imbedded grope of class n, then the knot is ⌈ 2 ⌉-trivial in the sense of Gusarov and Stanford. That is, all type ⌈ 2 ⌉ invariants vanish on K. We also give a simple way to construct all knots bounding a grope of a given class. It is further shown that this result is optimal in the sense that for any n there exist gropes which are not ⌈ ...
متن کاملa Grope ?
892 NOTICES OF THE AMS VOLUME 51, NUMBER 8 The mathematical term grope first appeared in print in Jim Cannon’s 1978 Bulletin exposition [1]. He credited the term to his Madison colleague Russ McMillan, a geometric topologist. Cannon explained that the object in question was called a grope “because of its multitudinous fingers.” He went on to warn that “this terminology suggests any number of ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 23 شماره
صفحات -
تاریخ انتشار 2013